If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-98x-100=0
a = 1; b = -98; c = -100;
Δ = b2-4ac
Δ = -982-4·1·(-100)
Δ = 10004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10004}=\sqrt{4*2501}=\sqrt{4}*\sqrt{2501}=2\sqrt{2501}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-98)-2\sqrt{2501}}{2*1}=\frac{98-2\sqrt{2501}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-98)+2\sqrt{2501}}{2*1}=\frac{98+2\sqrt{2501}}{2} $
| x+0.97x=0.02 | | -1/6v=7/15 | | 6x+125=3x+127 | | 5x+1x+54=90 | | 5x+1x+54=180 | | x+0.97x=0.99 | | (5w+7)(w+5)=0 | | x/5+184=266.50 | | 9a+3a-10a-a=7 | | x+0.97x=0.01 | | 1x+1x+100=180 | | 7x-5x-x-1=10 | | x+9=9x+1 | | h^2+3h-140=0 | | -3+x=7 | | ‐3+x=7 | | 56-q=0 | | -‐3+x=7 | | 15n+2n-8n=18 | | 10y/9=2 | | 3m-2m-m+5m-2=3 | | m-1/4=15 | | x-0.97x=0.99 | | 11x-x-7x-1=14 | | x-23=-95 | | 2^3x=53 | | −6r−50 = −8 | | 25x3x=55 | | 30 = 10y | | 12x12=6 | | 4y+1=8 | | 11b+b+3b-13b=6 |